Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Support Care Cancer ; 32(4): 218, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456933

RESUMO

PURPOSE: Dragon Boat discipline has become a popular type of physical exercise among women with breast cancer. The present study aims to investigate the effects of Dragon Boat activity on body composition, physical function, and psychosocial aspects (i.e., body appreciation and quality of life [QoL]) in women operated for breast cancer. METHODS: Thirty-one women (age, 57.88 ± 7.88 years; BMI, 27.86 ± 6.38 kg·m-2) with a previous breast removal surgery were recruited and randomized into two groups: Dragon Boat group (DB, N = 18) or a home-based non-supervised training program (home exercise group; HG, N = 13). All participants underwent body composition, handgrip test, 30-s chair stand test (30CST), 6-min walking test (6MWT), and shoulder mobility measurements at baseline and after 12 weeks of intervention. Participants also filled out the Body Appreciation Scale-2 (BAS-2) and the Short Form Health Survey-12 (SF-12) self-report questionnaires. RESULTS: Dragon Boat activity significantly improved the 30CST (+ 6%, p = .011) and 6MWT performance (+ 30%, p = .011) compared to a home-based non-supervised training program. Moreover, 20% (3/15 women) of women in the DB group obtained a reliable change from pre- to post-intervention in the BAS-2 and in the mental QoL component of the SF-12 (vs 15% and 0% of the HC group). No reliable change emerged for the physical component of the SF-12. CONCLUSION: Dragon Boat activity is efficient to improve lower limb strength in women operated for breast cancer. Furthermore, Dragon Boat activity emerged to improve body appreciation and mental QoL in some of the women assigned to this activity. Importantly, no adverse events were documented during the intervention. TRIAL REGISTRATION: NCT05206526 (10/02/2022).


Assuntos
Neoplasias da Mama , Sobreviventes de Câncer , Esportes Aquáticos , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Neoplasias da Mama/psicologia , Qualidade de Vida/psicologia , Navios , Força da Mão
2.
Mayo Clin Proc Innov Qual Outcomes ; 8(1): 62-73, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38268988

RESUMO

Objective: To examine the dose-response association between estimated cardiorespiratory fitness (eCRF) and risk of myocardial infarction (MI). Patients and Methods: Adults who attended Tromsø Study surveys 4-6 (Janurary 1,1994-December 20, 2008) with no previous cardiovascular disease were followed up through December 31, 2014 for incident MI. Associations were examined using restricted cubic splines Fine and Gray regressions, adjusted for education, smoking, alcohol, diet, sex, adiposity, physical activity, study survey, and age (timescale) in the total cohort and subsamples with hyperlipidemia (n=2956), hypertension (n=8290), obesity (n=5784), metabolic syndrome (n=1410), smokers (n=3823), and poor diet (n=3463) and in those who were physically inactive (n=6255). Results: Of 14,285 participants (mean age ± SD, 53.7±11.4 years), 979 (6.9%) experienced MI during follow-up (median, 7.2 years; 25th-75th, 5.3-14.6 years). Females with median eCRF (32 mL/kg/min) had 43% lower MI risk (subdistributed hazard ratio [SHR], 0.57; 95% CI, 0.48-0.68) than those at the 10th percentile (25 mL/kg/min) as reference. The lowest MI risk was observed at 47 mL/kg/min (SHR, 0.02; 95% CI, 0.01-0.11). Males had 26% lower MI risk at median eCRF (40 mL/kg/min; SHR, 0.74; 95% CI, 0.63-0.86) than those at the 10th percentile (32 mL/kg/min), and the lowest risk was 69% (SHR, 0.31; 95% CI, 0.14-0.71) at 60 mL/kg/min. The associations were similar in subsamples with cardiovascular disease risk factors. Conclusion: Higher eCRF associated with lower MI risk in females and males, but associations were more pronounced among females than those in males. This suggest eCRF as a vital estimate to implement in medical care to identify individuals at high risk of future MI, especially for females.

3.
J Electromyogr Kinesiol ; 74: 102850, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065045

RESUMO

High-Density surface Electromyography (HD-sEMG) is the most established technique for the non-invasive analysis of single motor unit (MU) activity in humans. It provides the possibility to study the central properties (e.g., discharge rate) of large populations of MUs by analysis of their firing pattern. Additionally, by spike-triggered averaging, peripheral properties such as MUs conduction velocity can be estimated over adjacent regions of the muscles and single MUs can be tracked across different recording sessions. In this tutorial, we guide the reader through the investigation of MUs properties from decomposed HD-sEMG recordings by providing both the theoretical knowledge and practical tools necessary to perform the analyses. The practical application of this tutorial is based on openhdemg, a free and open-source community-based framework for the automated analysis of MUs properties built on Python 3 and composed of different modules for HD-sEMG data handling, visualisation, editing, and analysis. openhdemg is interfaceable with most of the available recording software, equipment or decomposition techniques, and all the built-in functions are easily adaptable to different experimental needs. The framework also includes a graphical user interface which enables users with limited coding skills to perform a robust and reliable analysis of MUs properties without coding.


Assuntos
Músculo Esquelético , Humanos , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Potenciais de Ação/fisiologia
4.
J Sport Health Sci ; 13(2): 264-276, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37331508

RESUMO

PURPOSE: This study aimed to non-invasively test the hypothesis that (a) short-term lower limb unloading would induce changes in the neural control of force production (based on motor units (MUs) properties) in the vastus lateralis muscle and (b) possible changes are reversed by active recovery (AR). METHODS: Ten young males underwent 10 days of unilateral lower limb suspension (ULLS) followed by 21 days of AR. During ULLS, participants walked exclusively on crutches with the dominant leg suspended in a slightly flexed position (15°-20°) and with the contralateral foot raised by an elevated shoe. The AR was based on resistance exercise (leg press and leg extension) and executed at 70% of each participant's 1 repetition maximum, 3 times/week. Maximal voluntary isometric contraction (MVC) of knee extensors and MUs properties of the vastus lateralis muscle were measured at baseline, after ULLS, and after AR. MUs were identified using high-density electromyography during trapezoidal isometric contractions at 10%, 25%, and 50% of the current MVC, and individual MUs were tracked across the 3 data collection points. RESULTS: We identified 1428 unique MUs, and 270 of them (18.9%) were accurately tracked. After ULLS, MVC decreased by 29.77%, MUs absolute recruitment/derecruitment thresholds were reduced at all contraction intensities (with changes between the 2 variables strongly correlated), while discharge rate was reduced at 10% and 25% but not at 50% MVC. Impaired MVC and MUs properties fully recovered to baseline levels after AR. Similar changes were observed in the pool of total as well as tracked MUs. CONCLUSION: Our novel results demonstrate, non-invasively, that 10 days of ULLS affected neural control predominantly by altering the discharge rate of lower-threshold but not of higher-threshold MUs, suggesting a preferential impact of disuse on motoneurons with a lower depolarization threshold. However, after 21 days of AR, the impaired MUs properties were fully restored to baseline levels, highlighting the plasticity of the components involved in neural control.


Assuntos
Joelho , Extremidade Inferior , Masculino , Humanos , Joelho/fisiologia , Eletromiografia , Músculo Quadríceps/fisiologia , Neurônios Motores/fisiologia
5.
J Transl Med ; 21(1): 912, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102652

RESUMO

BACKGROUND: Bioelectrical impedance analysis (BIA) is a rapid and user-friendly technique for assessing body composition in sports. Currently, no sport-specific predictive equations are available, and the utilization of generalized formulas can introduce systematic bias. The objectives of this study were as follows: (i) to develop and validate new predictive models for estimating fat-free mass (FFM) components in male elite soccer players; (ii) to evaluate the accuracy of existing predictive equations. METHODS: A total of 102 male elite soccer players (mean age 24.7 ± 5.7 years), participating in the Italian first league, underwent assessments during the first half of the in-season period and were randomly divided into development and validation groups. Bioelectrical resistance (R) and reactance (Xc), representing the bioimpedance components, were measured using a foot-to-hand BIA device at a single frequency of 50 kHz. Dual-energy X-ray absorptiometry was employed to acquire reference data for FFM, lean soft tissue (LST), and appendicular lean soft tissue (ALST). The validation of the newly developed predictive equations was conducted through regression analysis, Bland-Altman tests, and the area under the curves (AUC) of regression receiver operating characteristic (RROC) curves. RESULTS: Developed models were: FFM = - 7.729 + (body mass × 0.686) + (stature2/R × 0.227) + (Xc × 0.086) + (age × 0.058), R2 = 0.97, Standard error of estimation (SEE) = 1.0 kg; LST = - 8.929 + (body mass × 0.635) + (stature2/R × 0.244) + (Xc × 0.093) + (age × 0.048), R2 = 0.96, SEE = 0.9 kg; ALST = - 24.068 + (body mass × 0.347) + (stature2/R × 0.308) + (Xc × 0.152), R2 = 0.88, SEE = 1.4 kg. Train-test validation, performed on the validation group, revealed that generalized formulas for athletes underestimated all the predicted FFM components (p < 0.01), while the new predictive models showed no mean bias (p > 0.05), with R2 values ranging from 0.83 to 0.91, and no trend (p > 0.05). The AUC scores of the RROC curves indicated an accuracy of 0.92, 0.92, and 0.74 for FFM, LST, and ALST, respectively. CONCLUSIONS: The utilization of generalized predictive equations leads to an underestimation of FFM and ALST in elite soccer players. The newly developed soccer-specific formulas enable valid estimations of body composition while preserving the portability of a field-based method.


Assuntos
Futebol , Humanos , Masculino , Adulto Jovem , Adulto , Impedância Elétrica , Composição Corporal , Análise de Regressão , Absorciometria de Fóton/métodos , Reprodutibilidade dos Testes
6.
J Physiol ; 601(10): 1831-1850, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36929484

RESUMO

Because of the biophysical relation between muscle fibre diameter and the propagation velocity of action potentials along the muscle fibres, motor unit conduction velocity could be a non-invasive index of muscle fibre size in humans. However, the relation between motor unit conduction velocity and fibre size has been only assessed indirectly in animal models and in human patients with invasive intramuscular EMG recordings, or it has been mathematically derived from computer simulations. By combining advanced non-invasive techniques to record motor unit activity in vivo, i.e. high-density surface EMG, with the gold standard technique for muscle tissue sampling, i.e. muscle biopsy, here we investigated the relation between the conduction velocity of populations of motor units identified from the biceps brachii muscle, and muscle fibre diameter. We demonstrate the possibility of predicting muscle fibre diameter (R2  = 0.66) and cross-sectional area (R2  = 0.65) from conduction velocity estimates with low systematic bias (∼2% and ∼4% respectively) and a relatively low margin of individual error (∼8% and ∼16%, respectively). The proposed neuromuscular interface opens new perspectives in the use of high-density EMG as a non-invasive tool to estimate muscle fibre size without the need of surgical biopsy sampling. The non-invasive nature of high-density surface EMG for the assessment of muscle fibre size may be useful in studies monitoring child development, ageing, space and exercise physiology, although the applicability and validity of the proposed methodology need to be more directly assessed in these specific populations by future studies. KEY POINTS: Because of the biophysical relation between muscle fibre size and the propagation velocity of action potentials along the sarcolemma, motor unit conduction velocity could represent a potential non-invasive candidate for estimating muscle fibre size in vivo. This relation has been previously assessed in animal models and humans with invasive techniques, or it has been mathematically derived from simulations. By combining high-density surface EMG with muscle biopsy, here we explored the relation between the conduction velocity of populations of motor units and muscle fibre size in healthy individuals. Our results confirmed that motor unit conduction velocity can be considered as a novel biomarker of fibre size, which can be adopted to predict muscle fibre diameter and cross-sectional area with low systematic bias and margin of individual error. The proposed neuromuscular interface opens new perspectives in the use of high-density EMG as a non-invasive tool to estimate muscle fibre size without the need of surgical biopsy sampling.


Assuntos
Fibras Musculares Esqueléticas , Condução Nervosa , Criança , Humanos , Eletromiografia/métodos , Condução Nervosa/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Potenciais de Ação/fisiologia
7.
Nutrients ; 15(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36678150

RESUMO

Bioelectrical impedance analysis (BIA) and anthropometry are considered alternatives to well-established reference techniques for assessing body composition. In team sports, the percentage of fat mass (FM%) is one of the most informative parameters, and a wide range of predictive equations allow for its estimation through both BIA and anthropometry. Although it is not clear which of these two techniques is more accurate for estimating FM%, the choice of the predictive equation could be a determining factor. The present study aimed to examine the validity of BIA and anthropometry in estimating FM% with different predictive equations, using dual X-ray absorptiometry (DXA) as a reference, in a group of futsal players. A total of 67 high-level male futsal players (age 23.7 ± 5.4 years) underwent BIA, anthropometric measurements, and DXA scanning. Four generalized, four athletic, and two sport-specific predictive equations were used for estimating FM% from raw bioelectric and anthropometric parameters. DXA-derived FM% was used as a reference. BIA-based generalized equations overestimated FM% (ranging from 1.13 to 2.69%, p < 0.05), whereas anthropometry-based generalized equations underestimated FM% in the futsal players (ranging from −1.72 to −2.04%, p < 0.05). Compared to DXA, no mean bias (p > 0.05) was observed using the athletic and sport-specific equations. Sport-specific equations allowed for more accurate and precise FM% estimations than did athletic predictive equations, with no trend (ranging from r = −0.217 to 0.235, p > 0.05). Regardless of the instrument, the choice of the equation determines the validity in FM% prediction. In conclusion, BIA and anthropometry can be used interchangeably, allowing for valid FM% estimations, provided that athletic and sport-specific equations are applied.


Assuntos
Composição Corporal , Esportes , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Impedância Elétrica , Antropometria/métodos , Absorciometria de Fóton/métodos
8.
J Physiol ; 601(15): 3187-3199, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35776944

RESUMO

Transcranial alternating current stimulation (TACS) is commonly used to synchronize a cortical area and its outputs to the stimulus waveform, but gathering evidence for this based on brain recordings in humans is challenging. The corticospinal tract transmits beta oscillations (∼21 Hz) from the motor cortex to tonically contracted limb muscles linearly. Therefore, muscle activity may be used to measure the level of beta entrainment in the corticospinal tract due to TACS over the motor cortex. Here, we assessed whether TACS is able to modulate the neural inputs to muscles, which would provide indirect evidence for TACS-driven neural entrainment. In the first part of the study, we ran simulations of motor neuron (MN) pools receiving inputs from corticospinal neurons with different levels of beta entrainment. Results suggest that MNs are highly sensitive to changes in corticospinal beta activity. Then, we ran experiments on healthy human subjects (N = 10) in which TACS (at 1 mA) was delivered over the motor cortex at 21 Hz (beta stimulation), or at 7 Hz or 40 Hz (control conditions) while the abductor digiti minimi or the tibialis anterior muscle were tonically contracted. Muscle activity was measured using high-density electromyography, which allowed us to decompose the activity of pools of motor units innervating the muscles. By analysing motor unit pool activity, we observed that none of the TACS conditions could consistently alter the spectral contents of the common neural inputs received by the muscles. These results suggest that 1 mA TACS over the motor cortex given at beta frequencies does not entrain corticospinal activity. KEY POINTS: Transcranial alternating current stimulation (TACS) is commonly used to entrain the communication between brain regions. It is challenging to find direct evidence supporting TACS-driven neural entrainment due to the technical difficulties in recording brain activity during stimulation. Computational simulations of motor neuron pools receiving common inputs in the beta (∼21 Hz) band indicate that motor neurons are highly sensitive to corticospinal beta entrainment. Motor unit activity from human muscles does not support TACS-driven corticospinal entrainment.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Córtex Motor/fisiologia , Neurônios Motores , Músculo Esquelético/fisiologia , Eletromiografia , Potencial Evocado Motor/fisiologia
9.
Rev Endocr Metab Disord ; 24(3): 439-449, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35918569

RESUMO

Resistance training has been proposed as a valid practice to counteract the aging effect on body mass and its components, which can be easily evaluated though the bioelectrical impedance analysis. This study aimed to achieve a systematic review with meta-analysis on the impact of resistance training on bioelectrical proprieties in older adults.A literature review was done in four electronic databases up to 1 January 2022. The inclusion criteria were: (i) participants aged ≥ 60 years; (ii) resistance training lasted ≥ 8 weeks; (iii) measurement of raw bioelectrical parameters in randomized controlled study designs.The outcomes of the trial had to be bioelectrical phase angle (PhA), resistance (R), and reactance (Xc). The methodological quality was assessed using the Rosendal scale.Overall, seven studies with a total of 344 participants were eligible for the analysis. The quality assessment yielded a score of 71.3%. Bioelectrical PhA (0.52 degree [95%CI 0.32, 0.71], p < 0.001) and Xc (3.58 ohms [95%CI 1.97, 5.19], p < 0.001) increased, whereas R decreased (-28.50 ohms [95%CI -41.39, -15.60], p < 0.001) after the resistance training programs.In this meta-analysis, resistance training promoted increases of PhA, which result from an increase in Xc concomitant with a reduction in R. According to the bioimpedance vector analysis, resistance-trained people experienced a beneficial leftward vector displacement, whilst inactivity induced a rightward vector displacement within the R-Xc graph. In future, more sophisticated and rigorous studies that address specific criteria, methods and targeted designs are required to identify which equipment and protocols allow for an optimization of the resistance training effects.Registration code in PROSPERO: CRD42020168057.


Assuntos
Composição Corporal , Treinamento Resistido , Humanos , Idoso , Impedância Elétrica , Ensaios Clínicos Controlados Aleatórios como Assunto , Envelhecimento
10.
J Neural Eng ; 19(4)2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35853438

RESUMO

Objective.High-density surface electromyography (HD-sEMG) allows the reliable identification of individual motor unit (MU) action potentials. Despite the accuracy in decomposition, there is a large variability in the number of identified MUs across individuals and exerted forces. Here we present a systematic investigation of the anatomical and neural factors that determine this variability.Approach. We investigated factors of influence on HD-sEMG decomposition, such as synchronization of MU discharges, distribution of MU territories, muscle-electrode distance (MED-subcutaneous adipose tissue thickness), maximum anatomical cross-sectional area (ACSAmax), and fiber cross-sectional area. For this purpose, we recorded HD-sEMG signals, ultrasound and magnetic resonance images, and took a muscle biopsy from the biceps brachii muscle from 30 male participants drawn from two groups to ensure variability within the factors-untrained-controls (UT = 14) and strength-trained individuals (ST = 16). Participants performed isometric ramp contractions with elbow flexors (at 15%, 35%, 50% and 70% maximum voluntary torque-MVT). We assessed the correlation between the number of accurately detected MUs by HD-sEMG decomposition and each measured parameter, for each target force level. Multiple regression analysis was then applied.Main results.ST subjects showed lower MED (UT = 5.1 ± 1.4 mm; ST = 3.8 ± 0.8 mm) and a greater number of identified MUs (UT: 21.3 ± 10.2 vs ST: 29.2 ± 11.8 MUs/subject across all force levels). The entire cohort showed a negative correlation between MED and the number of identified MUs at low forces (r= -0.6,p= 0.002 at 15% MVT). Moreover, the number of identified MUs was positively correlated to the distribution of MU territories (r= 0.56,p= 0.01) and ACSAmax(r= 0.48,p= 0.03) at 15% MVT. By accounting for all anatomical parameters, we were able to partly predict the number of decomposed MUs at low but not at high forces.Significance.Our results confirmed the influence of subcutaneous tissue on the quality of HD-sEMG signals and demonstrated that MU spatial distribution and ACSAmaxare also relevant parameters of influence for current decomposition algorithms.


Assuntos
Contração Isométrica , Músculo Esquelético , Braço/fisiologia , Eletromiografia/métodos , Humanos , Contração Isométrica/fisiologia , Masculino , Músculo Esquelético/fisiologia , Torque
11.
Physiol Rep ; 10(11): e15337, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35699134

RESUMO

This study aimed at: (1) Reporting COVID-19 symptoms and duration in professional football players; (2) comparing players' pulmonary function before and after COVID-19; (3) comparing players' metabolic power (Pmet ) before and after COVID-19. Thirteen male players (Age: 23.9 ± 4.0 years, V̇O2peak : 49.7 ± 4.0 mL/kg/min) underwent a medical screening and performed a running incremental step test and a spirometry test after COVID-19. Spirometric data were compared with the ones collected at the beginning of the same season. Players' mean Pmet of the 10 matches played before COVID-19 was compared with mean Pmet of the 10 matches played after COVID-19. Players completed a questionnaire on COVID-19 symptoms and duration 6 months following the disease. COVID-19 positivity lasted on average 15 ± 5 days. "General fatigue" and "muscle fatigue" symptoms were reported by all players during COVID-19 and persisted for 77% (general fatigue) and 54% (muscle fatigue) of the players for 37 ± 28 and 38 ± 29 days after the disease, respectively. No significant changes in spirometric measurements were found after COVID-19, even though some impairments at the individual level were observed. Conversely, a linear mixed-effects model analysis showed a significant reduction of Pmet (-4.1 ± 3.5%) following COVID-19 (t = -2.686, p < 0.05). "General fatigue" and "muscle fatigue" symptoms may persist for several weeks following COVID-19 in professional football players and should be considered for a safer return to sport. Players' capacity to compete at high intensities might be compromised after COVID-19.


Assuntos
Desempenho Atlético , COVID-19 , Corrida , Futebol , Adulto , Humanos , Masculino , Adulto Jovem , Desempenho Atlético/fisiologia , Fadiga Muscular , Futebol/fisiologia
12.
J Appl Physiol (1985) ; 132(1): 84-94, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792405

RESUMO

Although maximal force increases following short-term isometric strength training, the rate of force development (RFD) may remain relatively unaffected. The underlying neural and muscular mechanisms during rapid contractions after strength training are largely unknown. Since strength training increases the neural drive to muscles, it may be hypothesized that there are distinct neural or muscular adaptations determining the change in RFD independently of an increase in maximal force. Therefore, we examined motor unit population data acquired from surface electromyography during the rapid generation of force before and after 4 wk of strength training. We observed that strength training did not change the RFD because it did not influence the number of motor units recruited per second or their initial discharge rate during rapid contractions. Although strength training did not change motoneuron behavior in the force increase phase of rapid contractions, it increased the discharge rate of motoneurons (by ∼4 spikes/s) when reaching the plateau phase (∼150 ms) of the rapid contractions, determining an increase in maximal force production. Computer simulations with a motor unit model that included neural and muscular properties, closely matched the experimental observations and demonstrated that the lack of change in RFD following training is primarily mediated by an unchanged maximal recruitment speed of motoneurons. These results demonstrate that maximal force and contraction speed are determined by different adaptations in motoneuron behavior following strength training and indicate that increases in the recruitment speed of motoneurons are required to evoke training-induced increases in RFD.NEW & NOTEWORTHY Although maximal force increases with strength training, the rate of force development may remain unaffected. For the first time, we associated motor unit population behavior during rapid force contractions before and after a 4-wk isometric strength training intervention. We found that strength training combined with slow and rapid contractions does not change rate of force development. The specific mechanisms include similar discharge rate during the initial phase of contraction and similar recruitment speed of motoneurons.


Assuntos
Treinamento Resistido , Adaptação Fisiológica , Eletromiografia , Humanos , Contração Isométrica , Neurônios Motores , Contração Muscular , Músculo Esquelético
13.
J Physiol ; 599(22): 5103-5120, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34605556

RESUMO

The persistence of quadriceps weakness represents a major concern following anterior cruciate ligament reconstruction (ACLR). The underlying adaptations occurring in the activity of spinal motoneurons are still unexplored. This study examined the discharge patterns of large populations of motor units (MUs) in the vastus lateralis (VL) and vastus medialis muscles following ACLR. Nine ACLR individuals and 10 controls performed unilateral trapezoidal contractions of the knee extensor muscles at 35%, 50% and 70% of the maximal voluntary isometric force (MVIF). High-density surface electromyography (HDsEMG) was used to record the myoelectrical activity of the vasti muscles in both limbs. HDsEMG signals were decomposed with a convolutive blind source separation method and MU properties were extracted and compared between sides and groups. The ACLR group showed a lower MVIF on the reconstructed side compared to the contralateral side (28.1%; P < 0.001). This force deficit was accompanied by reduced MU discharge rates (∼21%; P < 0.05), lower absolute MU recruitment and derecruitment thresholds (∼22% and ∼22.5%, respectively; P < 0.05) and lower input-output gain of motoneurons (27.3%; P = 0.009). Deficits in MU discharge rates of the VL and in absolute recruitment and derecruitment thresholds of both vasti MUs were associated with deficits in MVIF (P < 0.05). A strong between-side correlation was found for MU discharge rates of the VL of ACLR individuals (P < 0.01). There were no significant between-group differences (P > 0.05). These results indicate that mid- to long-term strength deficits following ACLR may be attributable to a reduced neural drive to vasti muscles, with potential changes in excitatory and inhibitory synaptic inputs. KEY POINTS: Impaired expression and control of knee extension forces is common after anterior cruciate ligament reconstruction and is related to high risk of a second injury. To provide novel insights into the neural basis of this impairment, the discharge patterns of motor units in the vastus lateralis and vastus medialis were investigated during voluntary force contractions. There was lower knee extensor strength on the reconstructed side with respect to the contralateral side, which was explained by deficits in motor unit discharge rate and an altered motoneuronal input-output gain. Insufficient excitatory inputs to motoneurons and increased inhibitory afferent signals potentially contributed to these alterations. These results further our understanding of the neural underpinnings of quadriceps weakness following anterior cruciate ligament reconstruction and can help to develop effective rehabilitation protocols to regain muscle strength and reduce the risk of a second injury.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Humanos , Joelho , Articulação do Joelho , Força Muscular , Músculo Quadríceps
14.
J Appl Physiol (1985) ; 131(5): 1584-1598, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34617822

RESUMO

Neural and morphological adaptations combine to underpin the enhanced muscle strength following prolonged exposure to strength training, although their relative importance remains unclear. We investigated the contribution of motor unit (MU) behavior and muscle size to submaximal force production in chronically strength-trained athletes (ST) versus untrained controls (UT). Sixteen ST (age: 22.9 ± 3.5 yr; training experience: 5.9 ± 3.5 yr) and 14 UT (age: 20.4 ± 2.3 yr) performed maximal voluntary isometric force (MViF) and ramp contractions (at 15%, 35%, 50%, and 70% MViF) with elbow flexors, whilst high-density surface electromyography (HDsEMG) was recorded from the biceps brachii (BB). Recruitment thresholds (RTs) and discharge rates (DRs) of MUs identified from the submaximal contractions were assessed. The neural drive-to-muscle gain was estimated from the relation between changes in force (ΔFORCE, i.e. muscle output) relative to changes in MU DR (ΔDR, i.e. neural input). BB maximum anatomical cross-sectional area (ACSAMAX) was also assessed by MRI. MViF (+64.8% vs. UT, P < 0.001) and BB ACSAMAX (+71.9%, P < 0.001) were higher in ST. Absolute MU RT was higher in ST (+62.6%, P < 0.001), but occurred at similar normalized forces. MU DR did not differ between groups at the same normalized forces. The absolute slope of the ΔFORCE - ΔDR relationship was higher in ST (+66.9%, P = 0.002), whereas it did not differ for normalized values. We observed similar MU behavior between ST athletes and UT controls. The greater absolute force-generating capacity of ST for the same neural input demonstrates that morphological, rather than neural, factors are the predominant mechanism for their enhanced force generation during submaximal efforts.NEW & NOTEWORTHY In this study, we observed that recruitment strategies and discharge characteristics of large populations of motor units identified from biceps brachii of strength-trained athletes were similar to those observed in untrained individuals during submaximal force tasks. We also found that for the same neural input, strength-trained athletes are able to produce greater absolute muscle forces (i.e., neural drive-to-muscle gain). This demonstrates that morphological factors are the predominant mechanism for the enhanced force generation during submaximal efforts.


Assuntos
Contração Isométrica , Treinamento Resistido , Adaptação Fisiológica , Adolescente , Adulto , Eletromiografia , Humanos , Força Muscular , Músculo Esquelético , Adulto Jovem
15.
Artigo em Inglês | MEDLINE | ID: mdl-33917584

RESUMO

Accumulation of adipose tissue in specific body areas is related to many physiological and hormonal variables. Spot reduction (SR) is a training protocol aimed to stimulate lipolysis locally, even though this training protocol has not been extensively studied in recent years. Thus, the present study sought to investigate the effect of a circuit-training SR on subcutaneous adipose tissue in healthy adults. METHODS: Fourteen volunteers were randomly assigned to spot reduction (SR) or to a traditional resistance training (RT) protocol. Body composition via bioimpedance analysis (BIA) and subcutaneous adipose tissue via skinfold and ultrasound were measured before and after eight weeks of training. RESULTS: SR significantly reduced body mass (p < 0.05) and subcutaneous abdominal adipose tissue (p < 0.05). CONCLUSIONS: circuit-training SR may be an efficient strategy to reduce in a localized manner abdominal subcutaneous fat tissue depot.


Assuntos
Exercícios em Circuitos , Tecido Adiposo/metabolismo , Adulto , Composição Corporal , Exercício Físico , Humanos , Lipólise
16.
J Electromyogr Kinesiol ; 58: 102548, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33838590

RESUMO

There is a growing interest in decomposing high-density surface electromyography (HDsEMG) into motor unit spike trains to improve knowledge on the neural control of muscle contraction. However, the reliability of decomposition approaches is sometimes questioned, especially because they require manual editing of the outputs. We aimed to assess the inter-operator reliability of the identification of motor unit spike trains. Eight operators with varying experience in HDsEMG decomposition were provided with the same data extracted using the convolutive kernel compensation method. They were asked to manually edit them following established procedures. Data included signals from three lower leg muscles and different submaximal intensities. After manual analysis, 126 ± 5 motor units were retained (range across operators: 119-134). A total of 3380 rate of agreement values were calculated (28 pairwise comparisons × 11 contractions/muscles × 4-28 motor units). The median rate of agreement value was 99.6%. Inter-operator reliability was excellent for both mean discharge rate and time at recruitment (intraclass correlation coefficient > 0.99). These results show that when provided with the same decomposed data and the same basic instructions, operators converge toward almost identical results. Our data have been made available so that they can be used for training new operators.


Assuntos
Eletromiografia/normas , Potencial Evocado Motor , Músculo Esquelético/fisiologia , Adulto , Eletromiografia/métodos , Humanos , Masculino , Contração Muscular , Reprodutibilidade dos Testes
17.
Front Physiol ; 12: 623885, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716770

RESUMO

INTRODUCTION: The COVID-19 outbreak with partial lockdown has inevitably led to an alteration in training routines for football players worldwide. Thus, coaches had to face with the novel challenge of minimizing the potential decline in fitness during this period of training disruption. METHODS: In this observational pre- to posttest study involving Norwegian female football players (18.8 ± 1.9 years, height 1.68 ± 0.4 m, mass 61.3 ± 3.7 kg), we investigated the effects of a prescribed home-based and group-based intervention, implemented during the COVID-19 lockdown, on maximal muscular force production and high velocity variables. Specifically, maximal partial squat strength one repetition maximum (1RM), counter movement jump (CMJ) and 15 m sprint time were assessed 1 week prior to the lockdown and 12 weeks after the onset of lockdown. We also collected training content and volume from the prescribed training program and self-reported perceived training quality and motivation toward training. RESULTS: We observed no change in 1RM [pretest: 104 ± 12 kg, posttest: 101 ± 11 kg (P = 0.28)], CMJ height [pretest: 28.1 ± 2.3 cm, posttest: 26.8 ± 1.9 (P = 0.09)], and 15 m sprint time [pretest: 2.60 ± 0.08 s, posttest: 2.61 ± 0.07 s (P = 0.52)]. CONCLUSION: Our findings suggest that a prescribed home-based and group-based intervention with increased training time devoted to strength, jump, and sprint ability, and regulated to obtain a sufficient infection control level is feasible and effective to preserve strength, jumping, and sprinting abilities of high-level female football players during a ∼ 3-month period of a pandemic-induced lockdown.

18.
Eur J Appl Physiol ; 121(3): 675-685, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33355714

RESUMO

The initial increases in force production with resistance training are thought to be primarily underpinned by neural adaptations. This notion is firmly supported by evidence displaying motor unit adaptations following resistance training; however, the precise locus of neural adaptation remains elusive. The purpose of this review is to clarify and critically discuss the literature concerning the site(s) of putative neural adaptations to short-term resistance training. The proliferation of studies employing non-invasive stimulation techniques to investigate evoked responses have yielded variable results, but generally support the notion that resistance training alters intracortical inhibition. Nevertheless, methodological inconsistencies and the limitations of techniques, e.g. limited relation to behavioural outcomes and the inability to measure volitional muscle activity, preclude firm conclusions. Much of the literature has focused on the corticospinal tract; however, preliminary research in non-human primates suggests reticulospinal tract is a potential substrate for neural adaptations to resistance training, though human data is lacking due to methodological constraints. Recent advances in technology have provided substantial evidence of adaptations within a large motor unit population following resistance training. However, their activity represents the transformation of afferent and efferent inputs, making it challenging to establish the source of adaptation. Whilst much has been learned about the nature of neural adaptations to resistance training, the puzzle remains to be solved. Additional analyses of motoneuron firing during different training regimes or coupling with other methodologies (e.g., electroencephalography) may facilitate the estimation of the site(s) of neural adaptations to resistance training in the future.


Assuntos
Adaptação Fisiológica , Potencial Evocado Motor/fisiologia , Neurônios Motores/fisiologia , Treinamento Resistido , Humanos
20.
Artigo em Inglês | MEDLINE | ID: mdl-33024564

RESUMO

BACKGROUND: High load (HL: > 85% of one repetition maximum (1RM)) squats with maximal intended velocity contractions (MIVC) combined with football sessions can be considered a relevant and time-efficient practice for maintaining and improving high velocity movements in football. Flywheel (FW) resistance exercise (RE) have recently emerged with promising results on physical parameters associated with football performance. METHODS: In this randomized controlled trial over 6 weeks, 38 recreationally active male football players randomly performed RE with MIVCs two times per week as either 1) FW squats (n = 13) or 2) barbell free weight (BFW) HL squats (n = 13), where a third group served as controls (n = 12). All three groups conducted 2-3 football sessions and one friendly match a week during the intervention period. Pre- to post changes in 10-m sprint, countermovement jump (CMJ) and 1RM partial squat were assessed with univariate analyses of variance. RESULTS: The FW and BFW group equally improved their 10-m sprint time (2 and 2%, respectively, within group: both p < 0.001) and jump height (9 and 8%, respectively, within group: both p < 0.001), which was superior to the control group's change (between groups: both p < 0.001). The BFW group experienced a larger increase (46%) in maximal squat strength than the FW group (17%, between groups: p < 0.001), which both were higher than the control group's change (both p < 0.001). CONCLUSION: Squats carried out with FWs or BFWs where both are performed with MIVCs and combined with football sessions, were equally effective in improving sprint time and jump height in football players. The BFW group experienced a more than two-fold larger increase in maximal partial squat strength than the FW group in maximal partial squat strength. This presents FW RE as an alternative to BFW HL RE for improving high velocity movements in football. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04113031 (retrospectively registered, date: 02.10.2019).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA